MMB Replication Package Making the MMB the standard for DSGE algorithm testing

Alexander Meyer-Gohde

Gauri Pradeep Dathan, Anh H. Le, Johanna Saecker and Maximillian Thomin

06. September 2024

Motivation

Testing new algorithms

- ▶ Need for a standardized platform in macroeconomic modeling
- ► How to ensure robustness and reliability across different models?

Enhance consistency and comparability in macroeconomic research

- ▶ MMB as the ideal platform due to its extensive model database
- ► Thus far used to compare outcomes, e.g. policies, across models

Advance the field through improved algorithm performance and accuracy

extend the MMB to provide a model database for testing

Goal:

Make the MMB the standard for model robust algorithm testing

Outline

Current State

New Repository

User's Guide

Applications

New Repository

User's Guide

Applications

Currently, MMB replication is a zip download

- ► Incomplete, not standardized
 - Contains all the replications of the last 20 years with different Dynare version
 - Some replications do not work with newer Matlab/Dynare versions
 - Not including self-replicated models by the MMB team
 - ▶ Not generic using the Macroeconomic Model Data Base (MMB)

A comparison of solution methods using a large set of model

Requires a lot of manual work sifting through the zip

New Repository

User's Guide

Applications

Highlights

- ► The analysis requires Matlab and Dynare
- Users can run the exercise through all models in the updated replication folders
- ▶ We provide an option to run the exercise only with worked models

New Repository

- ► The new repository contains two main folders
 - ► A replication folder with updated models from the MMB
 - ► The other folder that can run comparison exercise
- There is one main file that the users only need to press to run
- ► They can choose between running with all models in the replication folder or only models that work with the comparison exercise

New Repository

User's Guide

Applications

User's Guide

1. Environment Setting

Required Software

- ► Install MATLAB (Optimization Toolbox package, the Statistics Toolbox package and the R2019a or newer versions are required).
- Install Dynare version 5.1

2. The Comparison Exercises

Model

► The MMB categorizes the models into five groups:

Calibrated - Models calibrated to match a closed economy. **Estimated US** and **Estimated Euro Area** - Models estimated on the US and the Euro area data.

Other - Models calibrated or estimated on data of multiple countries or countries outside the US or the Euro area

Adaptive Learning - Models in which agents form expectations through adaptive learning.

User's Guide

Running Comparison Exercise

- ► Go to the main directory
- ► run_Example_AMG_errors.m will run the comparison exercise.
- ▶ The file will run the comparison exercise through all models in the replication first as the default set-up. Some models will not work with the error calculation methods.
- After that, all the reports will be stored in Results/Result_allmodels.xlsx and Results/AMG_Results_worked.mat
- ► The program will then loop through only those models that worked and save the results in AMG_Results.mat

New Repository

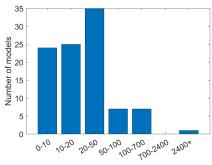
User's Guide

Applications

Applications

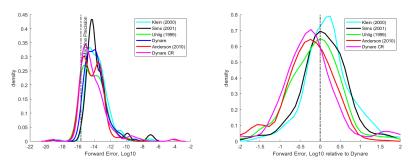
Measuring the numerical stability of solution methods

- ► Meyer-Gohde (2023a)
- Derives, implements and tests condition number and backward stability measures for solution of DSGE models


Implementing and assessing linear DSGE solution methods from applied math lit for matrix quadratics

- ► Meyer-Gohde and Saecker (2024) Newton based methods
- ► Huber et al. (2023) Structure preserving doubling methods
- ► Meyer-Gohde (2023b) Bernoulli iteration based methods

MMB Comparisons - Presented at ESEM, CEF, IAAE, CFE, SNDE


- Macroeconomic Model Data Base (MMB) (Wieland et al., 2012)
- compare solution methods for 99 models
 - accuracy
- Non-model specific approach
- A useful way to assess new solution (and estimation) techniques
- Look for toolbox extension of the MMB from the IMFS soon!

Number of state variables

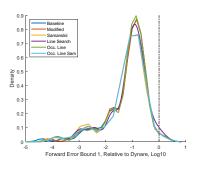
MMB Comparison: Forward Errors of Linear DSGE

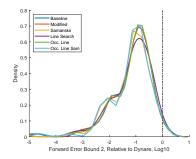
Figure: Forward Errors in MMB, Density Estimates

- ► Forward errors are in general within a couple orders of magnitude of machine precision
- Evidence that AIM and Cyclic Reduction in general more
- Solab and Gensys less accurate than Dynare

MMB Comparison: Speed & Convergence of Newton Based Methods

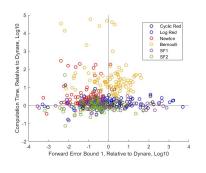
Method	Convergence	Run Time Median Min Max			Iterations
Dynare (QZ)	99	1	1	1	1
Baseline Newton Method	99	0.34	0.032	29	1
Modified Newton Method	99	0.34	0.031	25	1
with Šamanskii Technique	99	0.49	0.055	70	1
with Line Searches	99	0.34	0.033	30	1
with Occ. Line Searches	99	0.33	0.032	63	1
with Occ. LS & ŠT	99	0.54	0.058	71	1

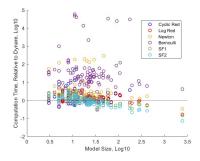

Initial guess: QZ-based solution. Run time relative to Dynare.


Initial guess: Dynare's solution

- ⇒ convergence rate significantly improved
- ⇒ one order of magnitude quicker

MMB Comparison: Accuracy of Newton Based Methods




Initial guess: Dynare's solution

 \Rightarrow <u>all</u> methods more accurate than Dynare(QZ)

MMB Comparison: Accuracy of Doubling Methods

Initial guess: Dynare's solution

- ⇒ similar in term of speed
- \Rightarrow more accurate (especially SF2)
- \Rightarrow <u>both</u> doubling algorithms become faster for larger models relative to Dynare(QZ)

New Repository

User's Guide

Applications

Conclusion

Generally new methods to solve, estimate, etc models are

designed, tested, and implemented for a specific application

Are the results applicable to different models?

► How can we evaluate new models in a model robust way?

Goal:

With the MMB: the standard for model robust answers

Thank you for your attention!

References I

- Huber, J., A. Meyer-Gohde, and J. Saecker (2023): "Solving linear DSGE models with structure-preserving doubling methods," IMFS Working Paper Series 195, Goethe University Frankfurt, Institute for Monetary and Financial Stability (IMFS).
- MEYER-GOHDE, A. (2023a): "Numerical Stability Analysis of Linear DSGE Models: Backward Errors, Forward Errors and Condition Numbers," IMFS Working Paper Series 193, Goethe University Frankfurt, Institute for Monetary and Financial Stability (IMFS).
- ——— (2023b): "Solving Linear DSGE Models with Bernoulli Methods," IMFS Working Paper Series 182, Goethe University Frankfurt, Institute for Monetary and Financial Stability (IMFS).
- MEYER-GOHDE, A. AND J. SAECKER (2024): "Solving linear DSGE models with Newton methods," Economic Modelling, 133, 106670.
- Wieland, V., T. Cwik, G. J. Müller, S. Schmidt, and M. Wolters (2012): "A new comparative approach to macroeconomic modeling and policy analysis,"

 <u>Journal of Economic Behavior & Organization</u>, 83, 523–541.